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1 DC and AC Current-Biased Josephson Junc-

tion

Now consider a Josephson junction with an ac current bias in addition to the
dc bias. The total current through the JJ is split three ways in general (going
through the ideal JJ, resistor, capacitor),

Idc + Iac sin(ωact) = Ic sin γ + Φ0

2πRN

dγ
dt + C Φ0

2π
d2γ
dt2 .

Multiply this current (I) equation by voltage ( ~
2e
dγ
dt ) to get the instantaneous

power equation as,
d
dt

{
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RN
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The left side appears to be the time rate of change of kinetic energy plus po-
tential energy, while the right hand side is the power dissipated in the resistor
plus a �uctuating force provided by the AC current bias.
The ac bias current has two consequences:
1) The agitation of the washboard produced by the �ac wiggle� will induce the
phase particle to jump over the barrier a little early as the washboard is tilted
towards the critical current. Thus the critical current will be reduced slightly
by this agitation.
2) Shapiro steps. Consider the junction in the running (dγdt 6= 0) �nite-voltage
state. As it �falls� along the tilted washboard, the �ctitious phase particle will
speed up and slow down periodically in time. The motion is perioidic, but not
sinusoidal. On average the phase particle will cover 2π radians in a period T ,
resulting in an average angular frequency 〈dγdt 〉 = 2π/T .
A resonance condition can be satis�ed when the ac drive frequency ωac coincides
with the periodicity of the motion of the phase point 2π/T . In this case the
driving current source can "phase lock" with motion of the phase particle and
there can be resonant absorption of energy by the JJ. Due to the intrinsic non-
linearity of the JJ, this may happen over a range of dc current values, resulting
in a "Shapiro step" in the current-voltage characteristic. The �rst Shapiro step
will occur at a voltage given by 〈V1〉 = ~ωac

2e .
As the washboard is tilted further (higher Idc), the phase particle will move
faster and it can cover multiple 2π periods of the washboard potential in the
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period of the ac drive. Hence there will be higher-order Shapiro steps, given by
voltages 〈Vn〉 = n~ωac

2e . Plugging in the numbers, the voltage step size will be
Vn = n ν

483.6MHz/µV , where ν is the linear frequency of the ac current bias in

MHz.
The class web site shows these Shapiro steps in the IV curve of a Nb point
contact.

2 Shapiro Step Details

Assume that the JJ is voltage biased (di�cult to achieve in practice, but it
simpli�es the calculation considerably) as,
V (t) = Vdc + Vac cos(ωact).
The gauge-invariant phase can be found by integrating the ac Josephson equa-
tion dγ

dt = 2e
~ V (t) as,

γ(t) = γ(0) + 2e
~ Vdct+ 2e

~ωac
Vac sin(ωact).

De�ne the Josephson frequency as ωJ ≡ 2eVdc

~ .
In a typical experiment, one measures the time-averaged current 〈I〉 as a func-
tion of the dc bias voltage Vdc. Calculating the current in the RSJ-model junc-
tion (ignoring the capacitor) yields,

I = V (T )
R + Ic sin

{
γ(0) + ωJ t+ 2eVac

~ωac
sin(ωact)

}
.

Now use the important identity for the sine of the sine function:
sin(a+ b sin θ) =

∑∞
n=−∞(−1)nJn(b) sin(a− nθ) to �nd

I(t) = V (T )
R + Ic

∑∞
n=−∞(−1)nJn( 2πVac

Φ0ωac
) sin [γ(0) + (ωJ − nωac)t].

Consider the time average of the current 〈I〉, which is the quantity usually mea-
sured in experiment. At an arbitrary driving frequency ωac the sine term will
average to zero. However, at the special frequencies ωJ = nωac there will be a
non-zero result,

〈I〉 = V (T )
R + Ic

∑∞
n=−∞(−1)nJn( 2πVac

Φ0ωac
) sin [γ(0)] δωJ ,nωac

.
These dc voltage values produce a range of currents depending on the value
of γ(0), creating a series of spikes periodic in Vdc riding on top of an Ohmic
background. These are the Shapiro steps.
The above calculation predicts that the widths of the steps will be modulated
with ac voltage amplitude Vac. Due to the dependence of the Bessel functions for
small arguments, Jn(x) ∼ xn each step will appear in order as the microwave
power is increased. The widths of the steps will change in a non-monotonic
manner with increasing Vac. The NIST voltage standard is based on a giant
Shapiro step.

3 DC SQUIDs

A SQUID is a Superconducting QUantum Interference Device. The DC SQUID
uses two superconductors connected by two Josephson junctions. It acts as a
sensitive magnetic �ux to voltage transducer. The dc SQUID is current biased,
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and the voltage drop on the device is monitored as a function of magnetic �ux
in the SQUID loop.
The bias current splits two ways and can be written as,
Ib = Ic sin γ1 + Ic sin γ2, where it is assumed that both junctions have identical
parameters (Ic, R, C), but their GIPD are di�erent in general. Using a trigono-
metric identity, one can write the bias current as,
Ib = 2Ic cos(γ1−γ22 ) sin(γ1+γ2

2 ).
Now we insist that the phase of the macroscopic quantum wavefunction be
the same, modulo 2π upon completing a circuit through the SQUID loop and
coming back to the same point. Using the expressions for the GIPD at the two
junctions, and the London relation between the current density, vector potential
and gradient of the phase in the superconductors, one can derive the following
result:
γ2− γ1 = 2π(n+ Φ

Φ0
), where n = 0,±1,±2, ... and Φ is the magnetic �ux in the

entire SQUID loop.
One can use this to write the sum of the GIPDs as γ1+γ2

2 = γ1 + π(n+ Φ
Φ0

).
With application of another trigonometric identity, we arrive at the result,

Ib = 2Ic cos(π Φ
Φ0

) sin(γ1 + π Φ
Φ0

) = Ĩc sin γ̃.

In other words, the dc SQUID acts as a single Josephson junction with
a �ux-tunable critical current. The renormalized critical current is Ĩc(Φ) =
2Ic cos(π Φ

Φ0
), the renormalized phase is given by γ̃ = γ1 + π Φ

Φ0
, the renor-

malized resistance is R̃ = R/2, and the renormalized capacitance is given by

C̃ = 2C.
(Note that in this derivation we assume that the "self-�ux" produced by screen-
ing currents in the loop is small, or in other words LIc << Φ0, where L is the
self-inductance of the loop.)

The critical current of the SQUID is a periodic function of �ux, repeating
every time Φ advances through Φ0. It ranges in value from 2Ic to zero periodi-
cally in �ux. Consider the case of a SQUID with small capacitance. It will have
an I-V curve given by,

〈V 〉 =

{
0 I < Ĩc

R̃N

√
I2 − Ĩ2

c (Φ) I > Ĩc

where Ĩc can be modulated between 2Ic and 0, depending on the �ux applied to
the SQUID. If we now bias the SQUID with a current just under 2Ic, the voltage
developed on the SQUID will be a function of �ux applied. The dependence will
be periodic in �ux with period Φ0, but not sinusoidal. The transfer function
between voltage and �ux is nonlinear, but can be linearized for small ranges of
applied �ux.
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